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ABSTRACT: A variational method is formulated with theoretical considerations for analyzing vortex flows in Doppler

radar–scanned tornadic mesocyclones. The method has the following features. (i) The vortex center axis (estimated as a

continuous function of time and height in the four-dimensional space) is used as the vertical coordinate, so the coordinate

system used for the analysis is slantwise curvilinear and nonorthogonal in general. (ii) The vortex flow (VF), defined by the

three-dimensional vector wind minus the horizontal moving velocity of vortex center axis, is expressed in terms of the

covariant basis vectors (tangent to the coordinate curves), so its axisymmetric part can be properly defined in that slantwise-

curvilinear coordinate system. (iii) To satisfy the mass continuity automatically, the axisymmetric part is expressed by the

scalar fields of azimuthally averaged tangential velocity and cylindrical streamfunction and the remaining asymmetric part is

expressed by the scalar fields of streamfunction and vertically integrated velocity potential. (iv) VF-dependent covariance

functions are formulated for these scalar variables and then deconvoluted to construct the square root of background error

covariance matrix analytically with the latter used to transform the control vector to precondition the cost function. (v) The

deconvoluted covariance functions and their transformed control variables satisfy two required boundary conditions (i.e.,

zero vertical velocity at the lower rigid boundary and zero cross-axis velocity along the vortex center axis), so the analyzed

VF satisfies not only the mass continuity but also the two boundary conditions automatically.
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1. Introduction

Increasing lead times for tornado, severe thunderstorm, and

flash flood warnings to reduce loss of life, injury, and economic

costs of high-impact weather is absolutely necessary and criti-

cal for a Weather Ready Nation—a key mission goal in the

research strategic plan of the National Oceanic and Atmospheric

Administration (NOAA2014).Toward this goal, awarn-on-forecast

(WoF) system was envisioned and developed (Stensrud et al.

2009, 2013;Wheatley et al. 2015) as a probabilistic convective-scale

ensemble analysis and forecast system that assimilates in-storm

observations into a high-resolution convection-resolving model

ensemble. However, since the pure-ensembleWoF system is not

always robust enough for optimally reducing initial condition

errors in all cases so far tested (Wheatleyet al. 2015; Joneset al. 2016;

Skinner et al. 2018), a three-dimensional ensemble–variational

data assimilation algorithm was developed and tested (Gao and

Stensrud 2014;Wang et al. 2019) aiming to improve the robustness

of the WoF system. Beyond these efforts and progresses, ana-

lyzing three-dimensional (3D) vortex winds in radar-observed

tornadic mesocyclones remains extremely difficult but critical for

tornadic-storm data assimilation and forecasts (Snook et al. 2019).

Accurately analyzing the 3D vortex wind in a radar-

observed tornadic mesocyclone requires the following two

conditions be satisfied in the first place—A: The vortex center

location should be estimated as a function of height and time

accurately enough (with the estimated location error smaller

than the radius of the true vortex core, that is, the radius of

the maximum tangential velocity of the true vortex flow); and

B: The background error covariance should be formulated with

vortex-flow dependencies in and around the vortex core. These

two conditions are neither satisfied by the current WoF system

nor considered by the recent tornado-resolving ensemble analyses

(Snook et al. 2016, 2019). On the other hand, as will be shown in

this paper, a variational method can be formulated to satisfy the

above two conditions, although the previously developed varia-

tionalmethods for analyzing stormwinds from radar observations

(Gao et al. 2013; Xu et al. 2010, 2015a) have an intrinsic limitation

in analyzing vortex winds due to the absence of vortex-flow

dependence in their background error covariance formulations.

To overcome the aforementioned intrinsic limitation, vortex-

flow-dependent background error covariance functions were

formulated in the two-dimensional (2D) variational method

(2DVar) developed recently for analyzing horizontal vortex

winds at low elevations in radar-scanned tornadic mesocyclones

(Xu et al. 2015b). This 2DVarmethod can be extended to analyze

vortex winds in 3D or 4D space. For such an extension, the vortex

center axis must be estimated first as a continuous function of

height and time in the 4D space to satisfy the aforementioned

condition A, and a three-step method was developed to achieve

this (Xu et al. 2017). Using the estimated vortex center axis as the

vertical coordinate, the local Cartesian coordinate system can be

transformed into a slantwise moving coordinate system cocen-

tered with the estimated vortex center axis in the 4D space, and

this slantwise moving coordinate system will be used in this paper

to formulate the aforementioned variationalmethod for analyzing

3D vortex winds in radar-scanned tornadic mesocyclones.

It has long been recognized that using a moving coordinate

system, either explicitly or implicitly, can reduce the advection-

caused errors in analyzing radar-observed moving storm systems,

and the involved techniques and related merits have been studiedCorresponding author: Dr. Qin Xu, qin.xu@noaa.gov
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by many investigators (Gal-Chen 1982: Chong et al. 1983; Yang

and Xu 1996; Zhang and Gal-Chen 1996; Caillault and Lemaitre

1999; Liou 1999, 2002; Liou et al. 2018; Liu et al. 2004; Shapiro

et al. 2010, 2015). However, unlike the moving rigid coordinate

systems considered in the previous studies, themoving coordinate

system used in this paper is slantwise curvilinear and time varying

in general. In this coordinate system, as will be seen in this paper,

the vortex flow (VF), defined by the 3D vector wind minus the

horizontal moving velocity of vortex center axis, should be

expressed in terms of the covariant basis vectors (tangent to the

coordinate curves) and then properly partitioned into an axi-

symmetric part and a remaining asymmetric part, so suitable

momentum control variables can be defined for each part

to satisfy the mass continuity with their background error co-

variance functions formulated in VF-dependent forms to sat-

isfy not only the aforementioned condition B but also the

required boundary conditions (see the end of section 2c). With

the partitioned formulations, the axisymmetric part of VF can

be analyzed, either separately in the first step or jointly with the

asymmetric part in a single step. The partitioned formulations

will be derived separately for each part and the method will be

presented in two steps in this paper.

The paper is organized as follows. The coordinate trans-

formation and related vortex flow partition are derived in

section 2. The formulations for analyzing the axisymmetric

part and the remaining asymmetric part of VF are presented in

sections 3 and 4, respectively, where VF-dependent covariance

functions are formulated and deconvoluted to construct the

square root of background error covariance matrix analyti-

cally. Conclusions follow in section 5.

2. Coordinate transformation, VF partition, and
background error partition

a. Coordinate transformation

To formulate the background wind error covariance func-

tions with desirable VF dependences in a generally slantwise

moving cylindrical coordinate system cocentered with the vortex

at each vertical level, we need to transform the local Cartesian

coordinate system (x, y, z, t) first into the following moving

coordinate system:

(x0, y0, z0, t0)5 (x2 x
c
, y2 y

c
, z, t), (2.1a)

where (xc, yc) is the vortex center location estimated as a

continuous function of (z, t) in the 4D space by the method of

Xu et al. (2017). This transformation ensures that the origin of

(x0, y0) is cocentered and moves with (xc, yc) on each vertical

level (see Fig. 1a). The space and time differential operators

are transformed by

(=,›
z
,›

t
)5 (=0, ›

z0 2 x
cz
� =0, ›

t0 2 u
c
� =0), (2.1b)

where =[ (›x, ›y)
T, =0 [ (›x0, ›y0)

T, xc [ xci1 ycj, xcz [ ›zxc 5
›zxci1 ›zyc j[ xczi1 yczj, uc [ ›txc 5 ›txci1 ›tycj[ uci1 ycj

is the horizontal moving velocity of the vortex center axis as a

function of height, and (i, j, k) denote the unit vectors in (x, y, z)

directions. In (x, y, z, t), the total wind is denoted by (u, y, w),

and its vortex part, VF, is defined and denoted by (uy, yy, w)[
(u–uc, y–yc, w). This vortex part can be also represented in

(x0, y0, z0) in terms of its three contravariant components,

defined and denoted by (u0, y0, w0) [ dt(x
0, y0, z0), where dt [

›t 1 u � = 1 w›z is the Lagrangian time derivative in (x, y, z, t)

where u5 ui1 yj. The three covariant basis vectors for (u0, y0,w0)
in (x0, y0, z0) are defined by e1 [ ›x0(xi 1 yj 1 zk) 5 i, e2 [
›y0(xi 1 yj 1 zk) 5 j and e3 [ ›z0(xi 1 yj 1 zk) 5 xcz 1 k,

respectively (see Fig. 1b). Note that e3 � (i, j, k)5 (›zxc, ›zyc, 1), so

e3 is tangent to the z0-coordinate curve. Using the above in-

troduced notations, the VF is represented by uyi1 yyj1 wk in

(x, y, z) and by u0e11 y0e21w0e3 in (x0, y0, z0). The equivalence
of these two representations (see Fig. 1b) leads to (u0, w0) 5
(uy–wxcz, w) or

(u
y
,w)5 u0 1w0x

cz
,w0

� �
, (2.2)

where u0 [ u0e1 1 y0e2 5 u0i 1 y0j and uy [ uyi 1 yyj.

FIG. 1. (a) Vortex-following moving coordinate system (x0, y0, z0)
plotted in black at t0 5 t 5 0 and t0 5 t 5 t in the local Cartesian

coordinate system (x, y, z) plotted in blue, where the thick blue

curve shows the trajectory of the vortex center xc(z, t) at z5 0 from

t 5 0 to t 5 t, and the two red slantwise curved cylinders show the

vortex cores at t5 0 and t5 t. (b) Covariant basis vectors (e1, e2, e3)

plotted by thick black arrows at a given point in (x0, y0, z0) and their

relationships with the unit vectors (i, j, k) plotted by thick blue

arrows in (x, y, z) directions, where the general relationship of e35
k1 xcz is simplified to e35 k1 yczj by setting xcz5 yczjwith xcz5 0

and thus is shown clearly in (y, z) vertical plan. The thick purple

arrow in (b) plots a 3D velocity vector of VFwith its two equivalent

expressions uyi 1 yyj 1 wk 5 u0e1 1 y0e2 1 w0e3 written in the

purple box, while the three component vectors of uyi1 yyj1wk (or
u0e1 1 y0e2 1 w0e3) are plotted by the thin blue (or red) arrows and

labeled by blue (or black) letters.
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The relationship derived in (2.2) can be also verified directly

by substituting (2.1a) and (2.1b) into the definition of (u0, y0, w0)[
dt(x

0, y0, z0), and this relationship can be written into a matrix

form of (uy, yy, w)
T 5 J(u0, y0, w0)T, where J 5 (e1, e2, e3) is a

33 3matrix with its three columns given by the three covariant

basis vectors defined above, and ( )T denotes the transpose of

( ). Note that J is just the Jacobian matrix of the transfor-

mation from (x0, y0, z0) to (x, y, z). Using the above derived

relationship, one can verify that the Lagrangian time deriva-

tive is invariant with respect to the coordinate transformation

in (2.1); that is, dt0 5 dt, where dt0 [ ›t0 1 u0 � =0 1 w0›z0 is the
Lagrangian time derivative expressed in (x0, y0, z0, t0). One can

also verify that the anelastic mass continuity equation has the

following invariant form in (x0, y0, z0, t0):

=0 � (r
a
u0)1 ›

z0 (raw
0)5 0, (2.3)

where ra is the basic-state air density scaled by its value at z0 5 0,

so ra is a function of z0 (5z) only and ra 5 1 at z0 5 0.

In the moving coordinate system (x0, y0, z0, t0), the temporal

variations of VF should be relatively slow (in comparison with

variations observed in the local Earth’s coordinate system) and

thus can be neglected within a sufficiently short time window,

which can be about 5min for a slowly evolving mesocyclone

but should be less than 30 s for a rapidly evolving tornado

(Wurman and Kosiba 2018; Kurdzo et al. 2017; Bluestein et al.

2019). For the method formulated in this paper, the analysis

time window is the time period of radar volume (or sector)

scan, which is about 5min for a volume scan from an opera-

tional WSR-88D but can be shorter than 10 s for a sector scan

from a rapid-scan mobile radar (see Table 1 of Kurdzo et al.

2017). As the method is formulated for analyzing the time

averaged VF over each analysis time window, u0 1 w0e3 is

treated as a stationary vector field within each analysis time

window in (x0, y0, z0, t0) and therefore can only vary with time

between consecutive analysis time windows (although uy 1 wk5
u0 1 w0xcz 1 w0k can vary with time within each analysis time

window due to the continuous variation of xczwith time). Thus, the

temporal resolutionof analyzedVFsdepends on the radar volume

(or sector) scan rate over the concerned tornadic mesocyclone.

b. VF partition and partitioned analyses

Since the vortex is centered at the origin of (x0, y0) for any
given (z0, t0), we can transform (x0, y0, z0) to a vortex-following

cylindrical coordinate system (R, b, z0), where

R[ (x02 1 y02)1/2, (x0, y0)5R(cosb, sinb). (2.4)

In (R, b, z0), u0 5 u0i1 y0j can be expressed by u0 5VRrc1VTtc,

where rc (or tc) is the unit vector along the radial (or tangential)

direction with respect to the vortex center, and VR (or VT) is

the radial (or tangential) component of u0. Thus, the VF ex-

pressed by u0 1 w0e3 5 VRrc 1 VTtc 1 w0e3 in (R, b, z0) can be

partitioned into an axisymmetric part, denoted by us 1 wse3 5
VR

s rc 1 VT
s tc 1 wse3, and an asymmetric part, denoted by

ua 1 wae3 5 VR
a rc 1 VT

a tc 1 wae3, where (Vs
R, V

s
T , w

s)[
(2p)

21Ð p
2p

(VR, VT , w
0) db and (Va

R, V
a
T , w

a) [ (VR, VT , w
0)2

(Vs
R, V

s
T , w

s). Substituting this partition into (2.2) gives the

axisymmetric and asymmetric parts of uy 1 wk defined in

the forms of us 1 wsk [ us 1 wsxcz 1 wsk and ua 1 wak [
ua 1waxcz 1wak, respectively. Here, by using the subscript

s (or a), us (or ua) denotes the axisymmetric (or asymmetric) part

ofuy, while by using the superscript s (or a),u
s (or ua) denotes the

axisymmetric (or asymmetric) part of u0. Similarly, ws (or wa)

denotes the axisymmetric (or asymmetric) part of w, while ws

(or wa) denotes the axisymmetric (or asymmetric) part of w0.
Note thatw5w0 in (2.2), sows5ws andwa5wa. Note also that

e35 xcz1 k (see Fig. 1b), so us1wsk[ us1wsxcz1wsk5 us1
wse3 and ua 1 wak [ ua 1 waxcz 1 wak 5 ua 1 wae3. A list of

frequently used variables and expressions defined and intro-

duced in this section is given in Table 1.

The VF expressed by uy 1 wk in (x, y, z) can be also ex-

pressed by yRrc1 yTtc1wk, where yR[ uy � rc5VR1wxcz � rc
and yT [ uy � tc 5 VT 1 wxcz � tc. Using this expression, the

axisymmetric part of the 2D vortex wind can be defined

by (ysR, y
s
T)[ (2p)

21Ð p
2p

(yR, yT) db, which is different from

(Vs
R, V

s
T) defined above unless xcz 5 0. This definition is

convenient for analyzing 2D horizontal vortex winds as it does

not require w0e3 be also analyzed. Because of this, this defini-

tion has been commonly used, either explicitly or implicitly, in

previously developed methods for simulating and/or detecting

tornadic vortex signatures from radar observations (Wood and

Brown 1997, 2011; Stumpf et al. 1998; Liu et al. 2007; Newman

et al. 2013) and for analyzing vortex winds in radar-observed

tornadic mesocyclones (Lee and Wurman 2005; Potvin et al.

2009, 2011; Xu et al. 2015b). In this case, the projection of w0e3
on rc (or tc), that is, wxcz � rc (or wxcz � tc) is included in yR 5
VR 1 wxcz � rc (or yT 5 VT 1 wxcz � tc), so ysR (or ysT) contains

the azimuthally averaged value of wxcz � rc (or wxcz � tc) which
is generally nonzero and can be large inside a slantwise updraft

or downdraft along the vortex core. Thus, (ysR, y
s
T , w

s) and its

related vortex wind partition are not suitable for 3D VF ana-

lyses in (x0, y0, z0). Besides, unlike (Vs
R, w

s), (ysR, w
s) cannot be

expressed succinctly by a single scalar to satisfy the conti-

nuity equation in (R, z0) [see (3.1)–(3.2)] and also, unlike

(Va
R, V

a
T , w

a), (yaR, y
a
T , w

a)[ (yR, yT , w)2 (ysR, y
s
T , w

s) cannot

be expressed succinctly by two scalars [see (4.1)] to satisfy the

continuity equation in (x0, y0, z0).
Asmentioned in the introduction, the two parts of VF can be

analyzed either jointly in a single step or separately in two steps

with the axisymmetric part analyzed in the first step. Since the

formulations for analyzing the two parts will be derived sepa-

rately in sections 3 and 4, it is convenient to present the analysis

method in two steps. In this case, the first step analyzes the

axisymmetric part of VF [that is, (us, ws) in (R, b, z0) or,

equivalently, (us, ws) 5 (us 1 wsxcz, w
s) in (x, y, z, t)] with the

background wind given by uc and the radial-velocity innova-

tion (i.e., observation minus background at each observation

location) given by

yir 5 yor 2w
T
sinu2 r

o
� u

c
, (2.5)

where yor denotes the radar-observed radial velocity,wT (,0) is

the downward terminal velocity of hydrometeors, u is the slope

angle of radar beam relative to the Earth surface beneath the

observation point, and ro is the unit vector in the radar beam

direction. The second step analyzes the remaining asymmetric
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part [that is, (ua, wa) in (R, b, z0) or, equivalently, (ua, wa) 5
(ua 1 waxcz, w

a) in (x, y, z, t)] with the background wind up-

dated to uc 1 us 1 wsk and the radial-velocity innovations

updated to

yisr [ yor 2w
T
sinu2 r

o
� (u

c
1u

s
1w

s
k)5 yir 2 r

o
� (u

s
1w

s
k) .

(2.6)

The detailed methods for the aforementioned two steps are

described in sections 3 and 4.

c. Background error partition and related theoretical
considerations

Consider that xc and uc [ ›txc can be estimated accurately

(within 60.2 km and 61m s21 to their respective true values)

by using the method of Xu et al. (2017) and uc is used as the

background wind in (x, y, z, t) for the first-step analysis, then

the background wind is zero in (x0, y0, z0, t0) and the background
error is simply the true VF, that is, the true total wind minus uc.

Thus, qualitative features of background error statistics can

be envisioned by considering a hypothetical ensemble of true

vortices with no prior information on vortex rotation direction

(so the ensemble includes both cyclonic and anticyclonic

vortices). When these true vortices are transformed into

their respective moving coordinate systems, they become

cocentered in (x0, y0, z0, t0). In this case, one can envision that

these cocentered vortices should have a large ensemble

spread with a near-zero mean for the sampled VFs (as their

ensemble includes both cyclonic and anticyclonic vortices).

However, if the ensemble includes only cyclonic vortices,

then their axisymmetric parts should have a large ensemble mean

with a relatively small spread. On the other hand, the asymmetric

parts of these cocentered vortices should have a small ensem-

ble mean with a relatively large spread in any cases.

Based on the above considerations, the background error

statistics for the axisymmetric part can be modeled approxi-

mately with zero mean but nonzero variance (or with nonzero

mean but zero variance) if both cyclonic and anticyclonic

vortices (or only cyclonic vortices) are included in the statistics.

Since the variational method is formulated in this paper not

only for stand-alone VF analyses [with zero background wind

in (x0, y0, z0, t0)] but also for its potential future applications to

vortex wind data assimilation (with background winds from

high-resolution model predictions), it is convenient to assume

that the background error is unbiased (with zero mean) for not

only the asymmetric part but also the axisymmetric part, and

this assumption will be revisited in the conclusion section.

Furthermore, since the axisymmetric part has no azimuthal

variation and the asymmetric part is defined with zero azi-

muthal mean, the background error correlation between the

two parts should be very weak and can be simply neglected.

With this simplification, background error covariance func-

tions can be formulated independently for the two parts to

avoid the complications and difficulties in deriving or com-

puting the analysis error covariance from the first-step analysis

and using it as the background error covariance for the second-

step analysis (Xu et al. 2016).

In addition to the above considerations, the VF in (x0, y0, z0, t0)
should satisfy the following two boundary conditions: (a) ws and

wa/ 0 as z0 / 0 (at the lower rigid boundary); (b) Vs
R, V

s
T , V

a
R,

TABLE 1. List of frequently used variables and expressions defined and introduced in section 2.

Variable/expression Description

(e1, e2, e3) Covariant basis vectors in (x0, y0, z0); see Fig. 1b

(i, j, k) Unit vectors in (x, y, z) directions

(R, b) Polar coordinate system transformed from (x0, y0) in (2.4)

rc (or tc) Unit vector in radial (or tangential) direction along R (or b)

ro Unit vector in the radar beam direction

u 1 wk [ ui 1 yj 1 wk 3D vector velocity of the total wind (u, y, w) in (x, y, z)

uc [ ›txc 5 ›txci 1 ›tycj [ uci 1 ycj Vortex center moving velocity

(uy, yy, w) [ (u 2 uc, y 2 yc, w) Velocity components of VF in (x, y, z)

uy 1 wk [ uyi 1 yyj 1 wk 3D vector velocity of VF in (x, y, z)

(u0, y0, w0) [ dt(x
0, y0, z0) Contravariant velocity components of VF in (x0, y0, z0)

u0 1 w0e3 [ u0e1 1 y0e2 1 w0e3 3D vector velocity of VF represented in (x0, y0, z0)
us 5Vs

Rrc 1Vs
T tc 5usi1 ysj Axisymmetric part of u0

ua 5Va
Rrc 1Va

T tc 5uai1 yaj Asymmetric part of u0

us 1 wsk [ usi 1 ysj 1 wsk Axisymmetric part of uy 1 wk

ua 1 wak [ uai 1 yaj 1 wak Asymmetric part of uy 1 wk

VR (or VT) Radial (or tangential) component of u0

(Vs
R, V

s
T , w

s) Axisymmetric part of (VR, VT, w
0)

(Va
R, V

a
T , w

a) Asymmetric part of (VR, VT, w
0)

yir (or y
is
r ) Radial-velocity innovation introduced in (2.5) [or (2.6)]

(x0, y0, z0, t0) Moving coordinate system defined in (2.1a)

xc [ xci 1 ycj Vortex center location as a function of (z, t)

xcz [ ›zxc 5 ›zxci 1 ›zycj [ xczi 1 yczj Vertical slope of vortex center axis

b See (R, b) above

u Slope angle of radar beam

ra Basic-state air density scaled by its value at z 5 0
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Va
T , and wa / 0 as R / 0 (at the vortex center). Since the true

VF represents the background error as explained earlier, the

above boundary conditions should be also satisfied by the par-

titioned background error standard deviations. These boundary

conditions will be built into the background error covariance

functions formulated in the next two sections.

3. Formulations for analyzing the axisymmetric
part of VF

a. Control variables and observation operator

As explained in section 2a, the axisymmetric part of VF,

(us, ws)5 (Vs
T tc 1Vs

Rrc, w
s), is treated as a stationary vector

field in (x0, y0, z0, t0) over each analysis time window. With this

treatment, (Vs
T , V

s
R, w

s) are functions of (R, z0) only and can be

substituted into ro � (us 1 wsxcz 1 wsk)5 ro � (us 1 wsk) to fit yir
[defined in (2.4)] over the analysis time window. In this case,

the mass continuity equation, (2.3), reduces to

›
R
(r

a
RVs

R)1 ›
z0 (raRw

s)5 0: (3.1)

Constrained by (3.1), the density-weighted vertical circulation

ra(V
s
R, w

s) in (R, z0) can be expressed by the cylindrical

streamfunction cs defined below:

r
a
R(Vs

R,w
s)[ 2›

z0Rc
s, ›

R
Rc s

� �
, (3.2)

where Rcs (rather than cs) is the classical Stokes stream-

function but defined in the cylindrical coordinate system (R, z0)
with a slantwise-curved axis in general. The boundary condi-

tions of ws 5 0 at z0 5 0 and Vs
R 5 0 at R 5 0 can be satisfied

automatically if cs 5 0 at z0 5 0 and R 5 0.

The three components of (us, ws)[ (us 1 wsxcz, w
s), defined

in section 2b according to (2.2), can be expressed by the two

control variables, cs and Vs
T , in the following forms:

u
s
52sinbVs

T 2 cosb›
z0c

s/r
a
1 x

cz
ws ,

y
s
5 cosbVs

T 2 sinb›
z0c

s/r
a
1 y

cz
ws ,

w
s
5ws 5 ›

R
(Rc s)/(r

a
R) . (3.3)

The radial component of (us, ws) in (x, y, z, t) is then given by

y
r
[ r

o
� (u

s
1w

s
k)5 (u

s
sinu1 y

s
cosu) cosu1w

s
sinu , (3.4)

where u is the azimuthal angle (clockwise with respect to the y

coordinate pointing to the north) of the concerned observation

point viewed from the radar site, and u is as in (2.5). The ob-

servation operator that relates the control variables (Vs
R, c

s)

to the innovation yir defined in (2.5) is formulated analytically

by (3.3)–(3.4).

b. Cost function and background error covariance functions

The cost function for fitting yr in (3.3)–(3.4) to yir in (2.5) is

J5 aTB21a1 jHa2dj2/s2
o , (3.5)

where a5 (aT1 , a
T
2 )

T
, a1 (or a2) is a column vector to denote the

state vector ofVs
T (or cs),B is the background error covariance

matrix, H is the radar radial-velocity observation operator

formulated in a matrix form by using (3.3)–(3.4), d is the in-

novation vector, that is, the state vector of yir in (2.5), and so is

the observation error standard deviation. Here, the observa-

tion errors are assumed uncorrelated, so the observation error

covariance matrix has the diagonal form of s2
oI, where I is the

identity matrix in the observation space. Note that the radar

radial-velocity observations must be processed through strin-

gent data quality control so their bias errors are largely elim-

inated, while their random errors are correlated only between

neighboring gates and beams according to Xu et al. (2007a,b).

Thus, for simplicity, the observation errors can be assumed

uncorrelated.

The background errors of (Vs
T , c

s) are assumed uncorrelated

between the two variables and asymptotically homogeneous

and isotropic away from the vortex center and ground surface

in (r, h), where

r[ ar sinh(R/R
c
)/l5 ln[(R/R

c
1 (R2/R2

c 1 1)
1/2
]/l and

h[ z0/H , (3.6)

Rc (51–2 km) is the radial-length scale of the vortex core re-

solvable by radar radial-velocity observations, l (or H) is the

background error decorrelation length (or depth) factored into

r (or h). Here, (l, H) can be estimated or specified differently

for Vs
T and cs, so the coordinate transformation from (R, z0)

to (r, h) in (3.6) can be also different for Vs
T and cs. Note that

rl 5 ar sinh(R/Rc) ’ R/Rc for R , Rc, so Rc is also the radial

range within which rl5 ar sinh(R/Rc) becomes nearly linear. Note

also that the decorrelation radial length in the original physical

space of R is given by Rc sinh(rl1 l/2)2Rc sinh(rl2 l/2)5
2Rc cosh(rl) sinh(l/2)5 2(R2 1R2

c)
1/2

sinh(l/2), which is essen-

tially a linear function of R given by 2R sinh(l/2) for R � Rc.

This linear increase of background error decorrelation radial

length withR reflects the linearly increased radial-length scales

of turbulent eddies away from the vortex center in true VFs,

because the background error is essentially the true VF as

explained in section 2c. However, the along-z0 vertical-length
scales of turbulent eddies in true VFs are constrained by

vertical stratifications and VFs0 depths independent of R,

so a constant background error decorrelation height can

be assumed and denoted by H. This explains the need and

physical implication of the coordinate transformation in

(3.6) which is introduced to facilitate the constructions of

VF-dependent covariance functions later in this and next

sections.

The above assumed noncorrelation between the background

errors of Vs
T and cs implies that B has the following block-

diagonal form:

B5 (B
1
,B

2
)diag, (3.7)

whereB1 (orB2) is the univariate background error covariance

matrix for a1 (or a2). The above assumed asymptotical homo-

geneity and isotropy in (r, h) for the background errors of

(Vs
T , c

s) allow Gaussian functions be used in (r, h) to model

the background error correlations and thus to construct B1 and

B2 in the following separable forms:
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B
1ij
5s2

1G0
(r

i
, r

j
)G(h

i
2 h

j
) , (3.8a)

B
2ij
5s2

2rirjG0
(r

i
, r

j
)G

0
(h

i
, h

j
), (3.8b)

where B1ij (or B2ij) denotes the ijth element of B1 (or B2)

associated with the ith and jth points at (ri, hi) and (rj, hj), re-

spectively, ri (or rj) denotes the value of ra at the ith (or jth) point,

s1 is a constant used to quantify the background error standard

deviation for Vs
T , and s2 is another constant used with ra in the

form of s2ra to quantify the background error standard deviation

for cs (so the background error standard deviation can be derived

forVs
R largely independent of the spatial variation of ra). The two

function forms in (3.8) are defined by

G
0
(h

i
,h

j
)[G(h

i
2h

j
)2G(h

i
1h

j
) , (3.9a)

G(h
i
2h

j
)[ exp[2(h

i
2h

j
)
2
/2] , (3.9b)

where hi (or hj) represents either r or h at the ith (or jth) point.

Note thatG( ) in (3.9b) is the Gaussian correlation function.

This Gaussian function is modified into G0(hi, hj) in (3.9a) by

subtracting its mirror image obtained by mirror-reflecting one

of the corrected points, either hi or hj, with respect to h5 0, so

the boundary condition ofG0(hi, hj)5 0 at hi 5 0 or hj5 0 can

be satisfied automatically (see Fig. 2 and section 2c). As shown

in the next subsection, this boundary condition is also satisfied

by the function form deconvoluted from G0(hi, hj), so the re-

quired boundary conditions of Vs
T 5 0 and Vs

R 5 0 5 0 at r 5 0

and ws 5 0 at h 5 0 can be satisfied automatically by the

solution [see (3.17)].

c. Square root of background error covariance matrix

The square root of B1 (or B2) can be constructed analytically

as shown below. First, as shown in appendixA, the two functions

defined in (3.9) can be expressed by the following integrals:

G
0
(h

i
,h

j
)5

ð‘
0

P
0
(h

i
,h

s
)P

0
(h

s
,h

j
) dh

s
, (3.10a)

G(h
i
2h

j
)5

ð‘
2‘

P
0
(h

i
2h

s
)P(h

s
2h

j
) dh

s
, (3.10b)

where

P
0
(h

i
,h

s
)[P(h

i
2h

s
)2P(h

i
1h

s
) , (3.11a)

P(h
i
2h

s
)[ (2/p)

1/4
exp[2(h

i
2h

s
)
2
] . (3.11b)

As shown in (3.10b) and (A1), G( ) is the self-convolution

of P( ), so P( ) is deconvoluted G( ). As shown in (A2)–(A6),

G0( , ) defined in (3.9a) consists of four convolutions obtained

by substituting P0( , ) defined in (3.11a) into the integral on the

right-hand side of (3.10a), so P0( , ) is deconvoluted G0( , ) in

a generalized sense.

Since (Vs
T , c

s) will be analyzed in a cuboidal domain co-

centered with the vortex in (x0, y0, z0), the two correlated points

are confined within the radial range of Rmax 5L/
ffiffiffi
2

p
and the

vertical range of D, where L (’20 km) is domain width and

D (,10 km) is domain height. Thus, ri and rj are confined be-

tween 0 and rmax[ ar sinh(Rmax/Rc)/l and hi and hj are confined

between 0 and hmax [ D/H. Note that the integrand P0(hi, hs)

P0(hs, hj) in (3.10a) becomes negligibly small as hs . hmax 1 2

for hi and hj confined between 0 and hmax, so the range of in-

tegration for the integral in (3.10a) can be reduced from 0 #

hs , ‘ to 0 # hs # hmax 1 2, where hmax 5 rmax (or hmax) if

h represents r (or h). Thus, if h represents r, the integral in

(3.10a) can be discretized into the following form:

G
0
(r

i
, r

j
)’�0s0P0

(r
i
, r

s0)P0
(r

s0 , rj)Dr5�0s0P0is0P0s0 j , (3.12a)

where P0is0 [P0(ri, rs0)(Dr)
1/2, P0s0j[P0(rs0, rj)(Dr)

1/2,Dr is the
grid spacing of discretized rs0 5 (s0 1 1/2)Dr,�0s0 denotes the

summation over integer s0 from 0 to Sr [ Int[(rmax 1 2)/Dr],
and Int[()] denotes the nearest integer of ( ). To adequately

resolve P0(ri, rs0), Dr should not exceed 1/2. As shown in

Fig. 2, G0(ri, rj) can be constructed quite accurately by using

(3.12a) with Dr 5 1/2.

Similarly, if h represents h, the integral in (3.10a) can be

discretized into

G
0
(h

i
,h

j
)’�0s00P0is00P0s00 j , (3.12b)

where P0is00 [ P0(hi, hs00)(Dh)
1/2, P0s00j [ P0(hs00, hj)(Dh)

1/2, Dh
is the grid spacing of discretized hs00 5 (s00 1 1/2)Dh, and

�0s00 denotes the summation over integer s00 from 0 to Sh [
Int[(hmax 1 2)/Dh]. Also, when h represents h, the integrand

P(hi2 hs)P(hs2 hj) in (3.10b) becomes negligibly small as hs.
hmax 1 2 or hs , 22, so the integration range can be reduced

from 2‘ # hs , ‘ to 22 # hs # hmax 1 2 and the integral in

(3.10b) can be discretized into

G(h
i
2h

j
)’�s00Pis00Ps00 j , (3.12c)

where Pis00 [ P(hi 2 hs00)(Dh)
1/2, Ps00 j [ P(hs00 2 hj)(Dh)

1/2, and

�s00 denotes the summation over integer s00 from2Int[2/Dh] to
Sh. To adequately resolve P0(hi, hs00) and P(hi2 hs00), Dh should

not exceed 1/2. Using (3.12c) with Dh 5 1/2, G(hi 2 hj) can be

constructed also quite accurately (not shown but the accuracies

are essentially the same as those shown in Fig. 2).

Substituting (3.12) into (3.8) gives

FIG. 2. ConstructedG0(ri, rj) [see (3.12a)] plotted as functions of

rj by red, green, and blue curves for ri 5 1, 2, and 5, respectively, vs

their benchmark truths [see (3.9a)] plotted by black dotted curves.
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B
1ij
5s2

1�s
P

1is
P

1sj
, (3.13a)

B
2ij
5s2

2rirj�0s
P

2is
P
2sj
, (3.13b)

where P1is [ P0is0Pis00, P2is [ P0is0P0is00, and�s (or�0s) denotes

the summation over integer s with s counting through all the

points of (s0, s00) in the 2D control-variable domain over the

ranges of 0# s0 # Sr and2Int[2/Dh]# s00 # Sh (or 0# s00 # Sh).

The matrix forms of (3.13a) and (3.13b) are

B
1
5s2

1P1
PT

1 , (3.14a)

B
2
5s2

2LP
2
(LP

2
)T , (3.14b)

where L is an diagonal matrix with its ith diagonal ele-

ment given by ri. Substituting (3.14) into (3.7) gives B5
(s1P1,s2LP2)

diag(s1P
T
1 ,s2LPT

2 )
diag

, soB1/25 (s1P1,s2LP2)
diag

is a square root of B satisfying B1/2BT/2 5 B.

d. Preconditioned cost function

Substituting a 5 B1/2c with B1/2 5 (s1P1, s2LP2)
diag into

(3.5) gives

J5 jcj2 1 jH0c2d/s
0
j2 , (3.15)

where H0 5s21
o HB1/2 is the so-scaled radial-velocity observa-

tion operator for the transformed control vector c5 (cT1 , c
T
2 )

T
,

and the two components of a5 (aT1 , a
T
2 )

T
are related to c1 and

c2 by

a
1
5s

1
P

1
c
1
, (3.16a)

a
2
5s

2
LP

2
c
2
. (3.16b)

To facilitate the subsequent derivations, thematrix elements in

(3.16) are given explicitly by

Vs
T(ri,hi

)5s
1�s

P
1is
c
1s
, (3.17a)

c s(r
i
, h

i
)5s

2
r
i�s

P
2is
c
2s
, (3.17b)

where (ri, hi) denotes the ith point in (r, h), c1s (or c2s) denotes

the sth element of c1 (or c2), and P1is (or P2is) is defined in

(3.13a) [or (3.13b)].

Substituting (3.17b) into (3.2) gives

Vs
R(ri,hi

)52s
2�0s

U
is
c
2s
, (3.18a)

ws(r
i
, h

i
)5s

2�0s
W

is
c
2s
, (3.18b)

where

U
is
5P

0
(r

i
, r

s
)[P0

0(hi
,h

s
)/H1P

0
(h

i
,h

s
)(d

z
lnr

a
)
i
](DrDh)1/2 ,

W
is
5 [P0

0(ri, rs)dr/dRi
1P

0
(r

i
, r

s
)/R

i
]P

0
(h

i
,h

s
)(DrDh)1/2 ,

P0
0(ri, rs)[ ›P

0
(r

i
, r

s
)/›r

i
5 2(2/p)1/4 (r

i
1 r

s
) exp 2(r

i
1 r

s
)2

h i
2 (r

i
2 r

s
) exp 2(r

i
2 r

s
)2

h in o
,

P0
0(hi

, h
s
)[ ›P

0
(h

i
,h

s
)/›h

i
5 2(2/p)1/4 (h

i
1h

s
) exp 2(h

i
1h

s
)2

h i
2 (h

i
2 h

s
) exp 2(h

i
2 h

s
)2

h in o
,

dr/dR
i
5 1= (R2

c 1R2
i )

1/2
l

h i
,

and (dz lnra)i denotes the value of d(lnra)/dz at the height of

the ith point.

One can verify that P1is / 0, Uis / 0, and Wis /

2P0
0(0, rs)(Rcl)

21P0(hi, hs)(DrDh)
1/2 as ri / 0, and Wis / 0 as

hi / 0, so the required boundary conditions of Vs
T 5 0 and

Vs
R 5 0 atR5 0 andws5 0 at z0 5 0 (see section 2c) are satisfied

automatically by the solutions constructed in (3.17)–(3.18).

One can also verify that ›Wis/›Ri / 0 as Ri / 0, so ws is

smooth (with no cusp) at R 5 0.

Substituting (3.17)–(3.18) into (3.3) gives

u
s
(r

i
,h

i
,b

i
, t0)52s

1
sinb

i�s
P

1is
c
1s
2s

2
cosb

i�0s
U

is
c
2s

1 x
czi
w

s
(r

i
,h

i
), (3.19a)

y
s
(r

i
,h

i
,b

i
, t0)5s

1
cosb

i�s
P

1is
c
1s
2s

2
sinb

i�0s
U

is
c
2s

1 y
czi
w

s
(r

i
, h

i
), (3.19b)

w
s
(r

i
,h

i
)5ws(r

i
,h

i
)5s

2�0s
W

is
c
2s
, (3.19c)

where (ri, hi, bi) denotes the ith point in (r, h, b), and xczi [
xcz(zi, t) [or yczi [ ycz(zi, t)] denotes the value of xcz (or ycz) at

(zi, t) for any t within the analysis time window or for t at the

time of the ith observation if (ri, hi, bi, t
0) denotes the ith

observation point. Note that ws is independent of (b, t0),
so its value at the ith point in (r, h, b) is simply denoted

by ws(ri, hi).

Substituting (3.19) into (3.4) gives

y
r
(r

i
,h

i
,b

i
, t0)5s

1�s
T
is
c
1s
1s

2�s
R

is
c
2s
, (3.20)

where

T
is
[ cosu

i
cos(u

i
1b

i
)P

1is
,

R
is
[ [cosu

i
(x

czi
sinu

i
1 y

czi
cosu

i
)1 sinu

i
]W

is

2 cosu
i
sin(u

i
1b

i
)U

is
.

Here, H0 5s21
o HB1/2 is derived analytically in the form of

H0 5 (s1T, s2R)/so with the isth element of T (or R) given by

Tis (or Ris).

For the axisymmetric part of VF, the dimension of c can

be relatively small (#103), so the minimizer of J in (3.15) can

be found by directly solving =cJ 5 c 1 H0TH0c 2 H0Td/so 5 0,
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which gives c 5 [I 1 H0TH0]21H0Td/so. In particular, since

I 1 H0TH0 is a symmetric matrix, its eigenvalues and eigen-

vectors can be computed efficiently and used to construct the

inverse matrix [I1H0TH0]21. A list of frequently used variables

defined and introduced in this section is given in Table 2.

4. Formulations for analyzing the asymmetric part of VF

a. Control variables and observation operator

As explained in section 2a, the asymmetric part of VF,

(ua,wa), is also treated as a stationary vector field in (x0, y0, z0, t0)
over each analysis time window. With this treatment, (ua, wa)

are functions of (x0, y0, z0) or (R, b, z0) only and can be

substituted into ro � (ua 1 waxcz 1 wak) 5 ro � (ua 1 wak) to fit

yisr [defined in (2.6)] over the analysis time window. In this case,

the two components of rau
a 5 (rau

a, ray
a) can be expressed in

(x0, y0, z0) by

r
a
ua 5 ›

x0x2 ›
y0c and r

a
ya 5 ›

y0x1 ›
x0c , (4.1)

where x (or c) is the velocity potential (or streamfunction)

associated with rau
a. Using (4.1), ua can be partitioned into

ua 5 uad 1 uar with ρau
ad [ =0x and rau

ar [ k 3 =0c for the

divergent and rotational parts of rau
a, respectively. In (R, b,

z0), ua can be expressed by ua 5Va
Rrc 1Va

T tc, where V
a
R and Va

T

are the radial and tangential components of ua, respectively,

given by the following partitioned forms:

Va
R 5Vad

R 1Var
R [ (›

R
x2R21›

b
c)/r

a
,

Va
T 5Vad

T 1Var
T [ (R21›

b
x1 ›

R
c)/r

a
. (4.2)

The mass continuity equation for the asymmetric part has the

same form as that for (u0,w0) in (2.3). Substituting (4.1) into this
mass continuity equation gives ›z0(raw

a) 5 2=02x in (x0, y0, z0)
or, equivalently,

›
z0 (raw

a)52(R21›
R
R›

R
1R22›2b)x in (R,b, z0). (4.3)

The two control variables can be then defined by

X[

ðz0
0

x dz and Y[c . (4.4)

Substituting (4.4) into (4.2)–(4.3) gives

Va
R 5 (›

R
›
z0X2 ›

b
Y/R)/r

a
,

Va
T 5 (›

b
›
z0X/R1 ›

R
Y)/r

a
.

wa 52(›
R
X/R1 ›2RX1 ›2bX/R2)/r

a
. (4.5)

Note thatua 5uai1yaj5Va
Rrc1Va

T tc, sou
a5Va

Rrc � i1Va
T tc � i5

Va
R cosb2 Va

T sinb and ya 5Va
Rrc � j1 Va

T tc � j5 Va
R s inb 1

Va
T cosb. Substituting these relationships into (ua, wa) [ (ua 1

waxcz, w
a), defined in section 2b according to (2.2), gives

u
a
5Va

R cosb2Va
T sinb1 x

cz
wa ,

y
a
5Va

R sinb1Va
T cosb1 y

cz
wa ,

w
a
5wa . (4.6)

The radial component of ua 1 wak in (x, y, z, t) is then given by

y
r
[ r

o
� (u

a
1w

a
k)5 (u

a
sinu1 y

a
cosu) cosu1w

a
sinu .

(4.7)

The observation operator that relates the control variables

(X, Y) to the updated radial-velocity innovations yisr defined

in (2.6) is thus formulated by (4.6)–(4.7).

b. Cost function and background error covariance functions

The cost function for fitting yr in (4.6)–(4.7) to yisr in (2.6) has

the same matrix form as that in (3.5), except that a5 (aT3 , a
T
4 )

T
,

a3 (or a4) is the state vector of X (or Y), H is the observation

operator formulated in (4.6)–(4.7), d becomes the state vector

of yr
is for the updated radial-velocity innovations in (2.6), B 5

(B3, B4)
diag, and B3 (or B4) is the univariate background error

covariance matrix for a3 (or a4). The background errors of

(X, Y) are assumed to be uncorrelated between the two vari-

ables and become increasingly homogeneous and isotropic

away from the vortex center and ground surface in (r, f, h),

where f5 b/F,F is a function of R introduced later in (4.9) to

TABLE 2. List of frequently used variables defined and introduced

in section 3.

Variable Description

a State vector of control variables

a1 (or a2) State vector of Vs
T (or cs)

B Background error covariance matrix

B1 (or B2) Background error covariance matrix for a1
(or a2)

B1ij (or B2ij) ijth element of B1 (or B2)

c Control vector transformed from a

c1 (or c2) Control vector transformed from a1 (or a2)
c1s (or c2s) sth element of c1 (or c2)

G0(,) and G( ) Function forms defined in (3.9a) and (3.9b)

H0 so-scaled radial-velocity observation opera-

tor for c
h [ z0/H z0 scaled by background error decorrelation

depth H

Dh Grid spacing of h for constructing the space

of c

l Background error decorrelation length

factored in r

P0(,) and P( ) Function forms defined in (3.11a) and (3.11b)

P1 (or P2) Matrix introduced in (3.14a) [or (3.14b)]

P1is (or P2is) isth element of P1 (or P2)

Rc Radial-length scale of vortex core

r 5 ar sinh(R/Rc)/l Transformed radial distance: ar sinh(R/Rc)

scaled by l

Dr Grid spacing of r for constructing the space

of c
R (or T) Matrix defined in (3.20)

Ris (or Tis) isth element of R (or T)

L Diagonal matrix with its ith diagonal element

given by ri
ri Value of ra at ith point

s1 (or s2) Background error standard deviation for Vs
T

(or cs/ra)

cs Cylindrical streamfunction defined in (3.2)
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quantify the decorrelation arc along b, (r, h) is transformed

from (R, z0) according to (3.6) and the transformed (r, h)

depend on (l,H) that can be estimated or specified differently

for X and Y. In addition, since the true (Va
R, V

a
T , w

a) diminish

to zero at the vortex center and so do their represented

background errors, the background error standard deviations

of X and Ymust decrease to zero rapidly enough as R/ 0 to

ensure the analyzed (Va
R, V

a
T , w

a) approach zero at the vortex

center and thus to prevent the analyzed asymmetric part of

VF from becoming singular or failing to converge at the

vortex center (see the last paragraph of appendix C). This is

achieved by using a smooth function of R, defined by F [
[tanh(R/Re)]

2, to modulate the background error standard

deviations of X and Y mainly in the vortex core, where the

scaling factor Re should have the same order of magnitude

as Rc.

Based on the above considerations, B3 and B4 can be con-

structed by Gaussian functions as shown below:

B
3ij
5s2

3gi
g
j
G

0
(r

i
, r

j
)G

0
(h

i
,h

j
)C(b

i
2b

j
) , (4.8a)

B
4ij
5s2

4gi
g
j
G

0
(r

i
, r

j
)G(h

i
2 h

j
)C(b

i
2b

j
) , (4.8b)

whereB3ij (orB4ij) denotes the ijth element ofB3 (orB4) associated

with the ith and jth points at (ri, bi, hi) and (rj, bj, hj), respectively, gi
(or gj) denotes the value of g [ raF at the ith (or jth) point, s3 (or

s4) is a constant used with g to quantify the background error

standarddeviation forX (orY), the function formofG0( , ) [orG( )]

is defined in (3.9a) [or (3.9b)], and C(bi 2 bj) is given by

C(b
i
2b

j
)5 [2F

i
F

j
/(F2

i 1F2
j )]

1/2�n
exp[2(b

i
2b

j
2 2np)

2
/(F2

i 1F2
j )]

’ [2F
i
F

j
/(F2

i 1F2
j )]

1/2
exp[(2jb

i
2b

j
j
mn
)
2
/(F2

i 1F2
j )] for F

i
and F

j
#p/2 , (4.9)

where�n denotes the summation over integer n from 0 to6‘,
jbi 2 bjjmn 5 min(jbi 2 bjj, jbi 2 bj 6 2pj), Fi (or Fj) is the

value ofF[ 2 sinh(l/2)1 [F02 2 sinh(l/2)]Rp/(R1Rp) atR5
Ri (or Rj), Rp can be set to Rp 5 L/4 (5 5 km for L 5 20 km),

andF0 can be set between p/2 and p. When the two correlated

points are on the same circle or on same cylindrical surface

(i.e., Ri 5 Rj), Fi 5 Fj and (4.9) reduces to

C(b
i
2b

j
)5�n

G(f
i
2f

j
2 2np/F)

’G(jf
i
2f

j
j
mn
) for F#p/2,

whereF5Fi5Fj, fi2 fj5 (bi2 bj)/F, jfi–fjjmn5min(jfi–

fjj, jfi–fj 6 2p/Fj), and f 5 b/F. In this case, F is the de-

correlation arc for the given R. Note that F / 2 sinh(l/2) as

R/ ‘, so the decorrelation arc length, RF, becomes equal to

the decorrelation radial length in R as the latter is given by

2(R2 1R2
c)

1/2
sinh(l/2) and approaches 2R sinh(l/2) in the limit

of R / ‘ [see (3.6)]. Note also that F / F0 as R / 0, so the

decorrelation arc becomes sufficiently large to suppress spu-

rious rapid azimuthal variations (not resolvable by radar ob-

servations) near the vortex center inside the vortex core.

c. Square root of background error covariance matrix

The square root of B3 (or B4) can be derived analytically in

the same way as shown for B2 (or B1) in section 3c. In addition

to the two functions defined in (3.9) and expressed by the in-

tegrals in (3.10), as shown in appendix B,C(bi2 bj) in (4.9) can

be expressed by the following integral:

C(b
i
2b

j
)5

ðp
2p

P
c
(b

i
2b

s
)P

c
(b

s
2b

j
)db

s
, (4.10)

where

P
c
(b

i
2b

s
)[ (2/p)1/4F21/2

i �n
exp[2(b

i
2b

s
2 2np)2/F2

i ]

’ (2/p)
1/4F21/2

i exp[2(jb
i
2b

s
j
mn
)
2
/F2

i ] for

F
i
#p/2 . (4.11)

As shown in (4.10) and (B1), C( ) is the self-convolution of

Pc( ), so Pc( ) is deconvoluted C( ).

The integral in (4.10) can be discretized into

C(b
i
2b

j
)’�s000Pcis000Pcs000 j , (4.12)

wherePcis00 0 [Pc(bi2 bs00 0)(D b)1/2,Pcs00 0j[Pc(bj2 bs00 0)(Db)
1/2,

Db 5 p/M is the grad spacing for discretized bs00 0 5 s00 0Db,
and �s00 0 denotes the summation over integer s00 0 from 1 2
M to M. To adequately resolve Pc(b), Db should not ex-

ceed Fmn/2, so M cannot be smaller than 2p/Fmn, where

Fmn 5min[F(R)]5 F(L/
ffiffiffi
2

p
) for R#Rmax 5L/

ffiffiffi
2

p
but Fmn /

2 sinh(l/2) as R / ‘. The truncated form of P(bi 2 bs)

at the last step of (4.11) is used to compute Pcis00 0 when

Fi # p/2. Using (3.12a) and (4.12), G0(ri, rj)C(bi 2 bj)

can be constructed quite accurately. When the con-

structed G0(ri, rj)C(bi 2 bj) is transformed back into

the Cartesian coordinate system of (x0, y0), its contours

exhibit strong VF dependencies in the physical space

as shown in Fig. 3.

Substituting (3.12) and (4.12) into (4.8) gives

B
3ij
5s2

3gi
g
j�0s

P
3is
P
3sj
, (4.13a)

B
4ij
5s2

4gi
g
j�s

P
4is
P

4sj
, (4.13b)

whereP3is[P0is0P0is00Pcis00 0,P4is[P0is0Pis00Pcis00 0, and�0s (or�s)

denotes the summation over integer s with s counting through

all the points of (s0, s00, s00 0) in the 3D control-variable domain

over the ranges of 0# s0 # Sr, 0# s00 # Sh (or2Int[2/Dh]# s00 #
Sh) and 1 2 M # s00 0 # M. The matrix forms of (4.13a) and

(4.13b) are

B
3
5s2

3GP3
(LP

3
)T , (4.14a)

B
4
5s2

4GP4
(LP

4
)
T
, (4.14b)

where G is a diagonal matrix with its ith diagonal ele-

ment given by gi. Substituting (4.14) into B 5 (B3, B4)
diag
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gives B5 (s3LP3,s4GP4)
diag(s3GP

T
3 ,s4GP

T
4 )

diag
, so B1/2 5

(s3GP3 , s4GP4 )
d i a g is a square root of B satisfying

B1/2BT/2 5 B.

d. Preconditioned cost function

Substituting a 5 B1/2c with B1/2 5 (s3GP3, s4GP4)
diag

into the cost function described in section 4b gives a pre-

conditioned cost function in the same matrix form as

that in (3.15), but d is the state vector of yr
is in (2.6),

H0 5s21
o HB1/2 is the so-scaled radial-velocity observation

operator for the newly transformed control vector c5 (cT3 , c
T
4 )

T
,

and the two components of a5 (aT3 , a
T
4 )

T
are related to c3

and c4 by

a
3
5s

3
GP

3
c
3
, (4.15a)

a
4
5s

4
GP

4
c
4
. (4.15b)

To facilitate the subsequent derivations, the matrix elements

in (4.15) are given explicitly by

X(r
i
,h

i
,b

i
)5s

3
g
i�0s

P
3is
c
3s
, (4.16a)

Y(r
i
,h

i
,b

i
)5s

4
g
i�s

P
4is
c
4s
, (4.16b)

where (ri, hi, bi) denotes the ith point in (r, h, b), c3s (or c4s)

denotes the sth element of c3 (or c4), andP3is (orP4is) is defined

in (4.13a) [or (4.13b)].

Substituting (4.16) into (4.5) and then into (4.6) gives

u
a
(r

i
, h

i
,b

i
, t0)5s

3�0s
(cosb

i
X

1is
2 sinb

i
X

2is
2 x

czi
X

3is
)c

3s
2s

4�s
(cosb

i
Y

1is
1 sinb

i
Y

2is
)c

4s
1 x

cz
wa ,

y
a
(r

i
,h

i
,b

i
, t0)5s

3�0s
(sinb

i
X

1is
1 cosb

i
X

2is
2 y

czi
X

3is
)c

3s
1s

4�s
(cosb

i
Y

2is
2 sinb

i
Y

1is
)c

4s
1 y

cz
wa ,

w
a
(r

i
,h

i
,b

i
, t0)52s

3�0s
X

3is
c
3s
, (4.17)

where xczi and yczi are as in (3.19), and the fivematrix element terms

X1is,X2is,Y1is,Y2is andX3is are given in appendixCwith the detailed

derivation of (4.17). As shown in (C4)–(C8), all the five matrix ele-

ment terms approach zero as ri/ 0, andX3is/ 0 as hi/ 0. Using

these results and noting that ua 5 ua 1 xczw
a, ya 5 ya 1 yczw

a and

wa 5 wa, one can verify that the required boundary conditions of

ua 5 0 and ya 5 0 at r 5 0, wa 5 0 at h 5 0 or r 5 0, and the

associated consistency conditions of ua5 xczwa and ya5 yczwa

at r 5 0 are satisfied automatically by the solutions con-

structed in (4.17).

Substituting (4.17) into (4.7) gives

y
r
(r

i
,h

i
,b

i
, t

i
)5s

3�0s
Q

is
c
1s
1s

4�s
S
is
c
2s
, (4.18)

where

Q
is
5 cosu

i
[sin(b

i
1u

i
)X

1is
1 cos(b

i
1u

i
)X

2is
]

2 [cosu
i
(x

czi
sinu

i
1 y

czi
cosu

i
)1 sinu

i
]X

3is
,

S
is
5 cosu

i
[cos(b

i
1u

i
)Y

2is
2 sin(b

i
1u

i
)Y

1is
] .

The observation operator H0 5s21
o HB1/2 in the preconditioned cost

function is thus derived here analytically in the form of H0 5 (s3Q,

s4S)/sowith the isth elementofQ (orS) givenbyQis (orSis).A list of

frequently used variables introduced in this section is given inTable 3.

For the asymmetric part of VF, the dimension of the control

vector c can be quite large (�103), so cmay hardly be computed by

using the method of matrix inversion described for the axisym-

metric part in section 3d.However, the standard conjugate-gradient

descending algorithm can be used to minimize the cost function in

the space of c and thus find the minimizer of the cost function.

As mentioned in the introduction, the axisymmetric part of VF

canbe also analyzed jointly in combinationwith the asymmetric part

in a single step. This can be done simply by combining (cT1 , c
T
2 ) and

(cT3 , c
T
4 )

T
into c5 (cT1 , c

T
2 , c

T
3 , c

T
4 )

T
. In this case, the preconditioned

cost function has the samematrix form as that in (3.15), except that

B1/2 is expanded from B1/2 5 (s1P1, s2LP2)
diag to B1/2 5 (s1P1,

s2LP2, s3GP3, s4GP4)
diag and H0 5 HB1/2/so is expanded from

H0 5 (s1T, s2R)/so to H0 5 (s1T, s2R, s3Q, s4S)/so, while d is

still the state vector of yir in (2.5). The process of two-step (or single-

step) analysis is shown inFig. 4a (or Fig. 4b). The final solutionuy 1
wk (5us1 wsk1 ua1 wak) obtained by submitting theminimizer

into (3.19) and (4.17) is a vector function of (ri, hi,bi, t
0), while (ri, hi,

bi) can be a continuously varying point in (r, h, b) due to the fact

that all the matrix element terms in (3.19) and (4.17) are derived

analytically from continuous covariance functions. Thus, the ana-

lyzedVF is essentially a spatially continuous vector field.A rigorous

proof of this can be given by constructing J as a functional in

the space of continuous functions similarly to those presented

in appendix A of Xu (2019).

5. Conclusions

Avariationalmethod is formulated in this paper for analyzing3D

VFsofa singlevortex (oreach individual subvortex separatelybutnot

multiple vortices simultaneously) in radar-scanned tornadic meso-

cyclones. In this method, the vortex center axis [estimated as a con-

tinuous functionof height and time in the 4Dspaceby the three-step

method ofXu et al. (2017)] is used as the vertical coordinate and the

analysis domain is centered along this vertical coordinate. The co-

ordinate system is thus time-varying slantwise curvilinear and non-

orthogonal in general [see (2.1)]. Analyzing VFs in this coordinate

system confronts new challenging issues concerning how to define

suitable momentum control variables to satisfy the mass continuity

automatically and how to formulate VF-dependent background er-

ror covariance functions for these control variables to satisfy the two

required boundary conditions (stated at the end of section 2c):

(a) zero vertical velocity at the lower rigid boundary and (b) zero

cross-axis velocity along the vortex center axis. These issues

are addressed with theoretical considerations as the variational

method is formulated in this paper. The main results are summa-

rized below:

(i) The VF, defined by the system-relative wind in the afore-

mentioned slantwise-curvilinear moving coordinate system,
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must be expressed in terms of the covariant basis vectors

(tangent to the coordinate curves), so the mass continuity

equation can be invariant with respect to the coordinate

transformation [see (2.1)–(2.3) and section 2a] and the

axisymmetric part and remaining asymmetric part of VF

can be properly defined (see section 2b) with each part

expressed succinctly by two scalar control variables to

satisfy the mass continuity equation automatically.

(ii) Azimuthally averaged tangential velocity and cylindrical

streamfunction are defined to satisfy the mass continu-

ity equation [see (3.1)–(3.3)] and used as the two scalar

control variables in the cost function for analyzing

the axisymmetric part of VF [see (3.5)]. Covariance

functions are formulated for the two control variables

to satisfy the two required boundary conditions by using a

Gaussian correlation function (for each control variable

along each coordinate) minus its mirror image with respect

to the concerned boundary [see (3.9a) and Fig. 2]. These

covariance functions are deconvoluted to construct the

square root of background error covariance matrix analyti-

cally for preconditioning the cost function (see sections 3c

and 3d). The deconvoluted covariance functions satisfy the

two boundary conditions, so the analyzed axisymmetric part

of VF satisfies the two boundary conditions automatically.

(iii) Streamfunction and vertically integrated velocity potential are

defined to satisfy themass continuity equation [see (4.1)–(4.4)]

and used as the two scalar control variables in the cost

function for analyzing the asymmetric part of VF. VF-

dependent correlation functions are formulated for these

two control variables [see (4.8) and Fig. 3] to satisfy the

required boundary condition (a) by using the approach

described in (ii) for the axisymmetric part. To satisfy the

required boundary condition (b), the associated background

error standard deviations must be modulated along the ra-

dial direction in the vortex core so they can diminish rapidly

enough toward the vortex center to prevent the analyzed

asymmetric part of VF from becoming singular at the vortex

center (see appendix C). These VF-dependent covariance

functions are deconvoluted to construct the square root of

background error covariancematrix to precondition the cost

function (see sections 4b–4d). The deconvoluted covariance

functions satisfy the two boundary conditions, so the ana-

lyzed asymmetric part of VF satisfies the two boundary

conditions automatically.

(iv) For each control variable, the background error is assumed

to be random with zero mean, asymptotically homogeneous

and isotropic away from the vortex center and ground surface

in the transformed slantwise cylindrical coordinate system

[see (3.6)] in which the error decorrelation radial length (or

height) is scaled to a unit value [see (3.8)–(3.9)]. Transformed

back to the original physical space, the error decorrelation

radial length becomes essentially a linearly increasing

function of the radial distance away from the vortex center

[see the analysis below (3.6)]. This range-dependent error

decorrelation radial length and the range-dependent error

decorrelation arc length (see the end of section 4b) reflect

the linearly increased horizontal length scales of turbulent

eddies away from the vortex center and their correlation

structures in true VFs, because the background error is

essentially the true VF when the background wind is given

by themoving velocity of the vortex center (see section 2c).

This explains the necessity and physical implication of the

radial coordinate transformation introduced in (3.6).

(v) The axisymmetric part of VF can be analyzed, either

separately in the first step or jointly with the asymmetric

TABLE 3. List of frequently used variables defined and introduced

in section 4.

Variable Description

a3 (or a4) State vector of X (or Y)

B3 (or B4) Background error covariance matrix for a3 (or a4)

B3ij (or B4ij) ijth element of B3 (or B4)

c3 (or c4) Control vector transformed from a1 (or a2)
c3s (or c4s) sth element of c3 (or c4)

C( ) Function form defined in (4.9)

Pc( ) Function form defined in (4.11)

P3 (or P4) Matrix introduced in (4.14a) [or (4.14b)]

P3is (or P4is) isth element of P3 (or P4)

Q (or S) Matrix defined in (4.18)

Qis (or Sis) isth element of Q (or S)

X (or Y) Control variable associated with x (or c) defined in (4.4)

G Diagonalmatrix with its ith diagonal element given by gi
g [ raF Variable introduced in (4.8) with F [ [tanh(R/Re)]

2

gi Value of g at ith point

s3 (or s4) Background error standard deviation forX/g (or Y/g)

x (or c) Velocity potential (or streamfunction) defined in

(4.1) for rau
a

FIG. 3. Constructed G0(ri, rj)C(bi 2 bj) [see (3.12a) and (4.12)]

plotted as functions of (x0, y0)5 (x0j, y
0
j) by red and green contours

for (Ri, bi) 5 (1 km, 08) and (5 km, 08), respectively, vs their

benchmark truths [see (3.9a) and (4.9)] plotted by dotted contours

with F0 5 p/2 used in the formulation of F defined in (4.8). Here,

(x0j, y
0
j)5Rc sinh(rjl)(cosbj, sinbj) denotes the jth point defined

by (rj, bj) in the (r, b)-coordinate system but transformed back

into the (x0, y0)-coordinate system by using (2.4) and (3.6) with

Rc 5 1.5 km and l 5 1/2 used in (3.6).
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part in a single step (see the end of section 4d and Fig. 4),

although themethod is presented in two steps. This makes

the method flexible for various applications.

(vi) The temporal resolution of analyzed VFs is limited by the

radar volume (or sector) scan rate, because the method is

formulated for analyzing the time averaged VF over each

analysis time window in the vortex-following moving co-

ordinate system and the analysis time window is updated at

the rate of radar volume (or sector) scans that cover the

concerned tornadic mesocyclone. On the other hand, the

analyzed VF is essentially a spatially continuous vector

field (as explained at the end of section 4c), so its spatial

resolution can be infinitely high although its intrinsic spatial

resolution is limited by the length scale resolvable by the

background error correlation functions in connection with

spatial distributions of observations.

In this paper, the cost function is formulated in an incremental form

and the background error is assumedunbiased (with zeromean). This

assumption is made to facilitate future applications (envisioned in

the introduction) in which the background winds will be from

high-resolution model predictions and the predicted vortices will

be recentered to (if not already cocentered with) the true center

locations estimated from radar and/or other observations (see

condition A stated in the introduction). For a stand-alone VF

analysis, the background wind is the estimated vortex center

moving velocity and becomes zero in the vortex-followingmoving

coordinate system, so the background error is essentially the true

VF. In this case, the background error can be assumed unbiased if

cyclonic and anticyclonic vortices are both included in the back-

ground error statistics (as explained in section 2b).However, if the

(cyclonic or anticyclonic) type of vortex detected from radar ob-

servations is used as a priori condition to retain vortices of the

observed type only in the statistics, then the conditioned back-

ground error statistics for the axisymmetric part of VF will have a

large mean with a relatively small variance and thus the back-

ground error should be treatedmainly as a bias error. In this case,

the variationalmethod formulated for analyzing the axisymmetric

part of VF in the first step should be considered as a regularized

least squares method with the background term reinterpreted as

the regularization term, aiming to correct the bias (of the afore-

mentioned zero background wind). The method formulated in

this paper has been tested for stand-alone VF analyses with sim-

ulated radar observations. The results are presented in Part II (Xu

and Wei 2020, manuscript submitted to J. Atmos. Sci.).
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APPENDIX A

Derivations of (3.10a) and (3.10b)

Substituting (3.11b) into the integral on the right-hand side

of (3.10b) gives

ð‘
2‘

P(h
i
2h

s
)P(h

s
2h

j
)dh

s

5 (2/p)
1/2
ð‘
2‘

dh
s
exp[2(h

i
2h

s
)
2 2 (h

s
2h

j
)
2
]

5 (2/p)1/2 exp[2(h
i
2h

j
)2/2]

ð‘
2‘

dh
s
exp[22(h

s
2h

i
/22h

j
/2)2]

5 (2/p)1/2 exp[2(h
i
2h

j
)2/2]

ð‘
2‘

dh0 exp(22h02)

5 exp[2(h
i
2h

j
)2/2][G(h

i
2h

j
) , (A1)

FIG. 4. (a) Process of two-step analysis. (b) Process of single-step

analysis.
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where2(hi2hs)
22(hs2hj)

252h2
i 2h2

j 22h2
s 1 2hs(hi 1hj)5

2h2
i 2h2

j 2 2[h2
s 2hs(hi 1hj) 1 (hi 1 hj)

2
/4] 1 (hi 1 hj)

2
/25

2(hi 2 hj)
2/2 2 2(hs 2 hi/2 2 hj/2)

2 is used in the first

step, h0 5 hs 2 hi/2 2 hj/2 is used in the second step, andÐ ‘
2‘dh

0 exp(22h02)5 (p/2)1/2, is used in the third step. The

result in the last step of (A1) gives the left-hand side of (3.10b).

Changing hj to 2hj, hi to 2hi, and (hi, hj) to (2hi, 2hj),

respectively, in (A1) givesð‘
2‘

P(h
i
2h

s
)P(h

s
1h

j
) dh

s
5G(h

i
1h

j
) , (A2)

ð‘
2‘

P(h
i
1h

s
)P(h

s
2h

j
) dh

s
5G(h

i
1h

j
) , (A3)

ð‘
2‘

P(h
i
1h

s
)P(h

s
2h

j
) dh

s
5G(h

i
2h

j
) , (A4)

where the properties thatG( ) defined in (3.9b) andP( ) defined

in (3.11b) are even functions of ( ) are used in the derivations

of (A3) and (A4).

Note that P0(hi, hs)P0(hs, hj) is an even function of hs, so the

integral on the right-hand side of (3.10a) can be written into

ð‘
2‘

P(h
i
,h

s
)P

0
(h

s
,h

j
) dh

s
5 (1/2)

ð‘
2‘

[P
0
(h

i
,h

s
)P

0
(h

s
,h

j
)1P

0
(h

i
,2h

s
)P

0
(2h

s
,h

j
)] dh

s

5 (1/2)

�ð‘
0

P
0
(h

i
,h

s
)P

0
(h

s
,h

j
) dh

s
1

ð0
‘

P
0
(h

i
,h

s
)P

0
(h

s
,h

j
) dh

s

�

5 (1/2)

ð‘
2‘

P
0
(h

i
,h

s
)P

0
(h

s
,h

j
) dh

s
. (A5)

Substituting (3.11a) into (A5) gives

ð‘
0

P
0
(h

i
,h

s
)P

0
(h

s
,h

j
) dh

s
5 (1/2)

ð‘
2‘

[P(h
i
2h

s
)2P(h

i
1h

s
)][P(h

s
2h

j
)2P(h

s
1h

j
)] dh

s

5 (1/2)[G(h
i
2h

j
)2G(h

i
1h

j
)2G(h

i
1h

j
)1G(h

i
2h

j
)]5G

0
(h

i
,h

j
), (A6)

where (A1)–(A4) are used in the second last step. The result

of (A6) gives (3.10a).

APPENDIX B

Derivation of (4.10)

Substituting (4.11) into the integral on the right-hand side of

(4.10) gives

ðp
2p

P
c
(b

i
2b

s
)P

c
(b

s
2b

j
) db

s

5 (pF
i
F

j
/2)

21/2�n�n0

ðp
2p

db
s
exp[2 (b

i
2b

s
2 2np)

2
/F2

i 2 (b
s
2b

j
2 2n0p)2/F2

j ]

5 (pF
i
F

j
/2)

21/2�n�n0

ð
n0
db0 exp[2 (b

ij
2 2np2 2n0p2b0)2/F2

i 2b02/F2
j ]

5 (pF
i
F

j
/2)21/2�n00�n0

ð
n0
db0 exp[2(b

ij
2 2n00p)2/F2

i 1 2(b
ij
2 2n00p)b0/F2

i 2 a2b02]

5 (pF
i
F

j
/2)21/2�n00 exp[2(b

ij
2 2n00p)2(F22

i 2 a22F24
i )]�n0

ð
n0
db0 expf2a2[b0 2 (b

ij
2 2n00p)/(aF

i
)2]2g

5 (pF
i
F

j
/2)

21/2�n00 exp[2(b
ij
2 2n00p)2/(F2

i 1F2
j )]

ð‘
2‘

db0 expf2a2[b0 2 (b
ij
2 2n00p)/(aF

i
)
2
]2g

5 (pF
i
F

j
/2)21/2�n00 exp[2(b

ij
2 2n00p)2/(F2

i 1F2
j )]

ð‘
2‘

db0 exp(2a2b002)

5 [2F
i
F

j
/(F2

i 1F2
j )]

1/2�n00 exp[2(b
i
2b

j
2 2n00p)2/(F2

i 1F2
j )] , (B1)

wherebij5bi2bj,n
005n1n0,b05bs2bj22n0p,

Ð
n0 db

0( )denotes
the integration of ( ) overb0 fromb0 52p2 bj2 2n0p tob0 5 p 2
bj 2 2n0p, a2 5F22

i 1F22
j , and b00 5 b0 2 (bij 2 2n00p)/(aFi)

2.

The following transformations are used in the derivation of

(B1): (i) The integration variable is transformed from bs to

b0 5 bs 2 bj 2 2n0p for each given integer value of n0 and thus
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the integration range is changed from (2p,p) to (2p2 bj–2n
0p,

p 2 bj 2 2n0p) as shown by the integral
Ð
n0 db0( ) in the

second step of the derivation of (B1). (ii) The summation

over integer n from 0 to 6‘, denoted by �n, is rearranged into

the summation over n00 from 0 to6‘, denoted by�n00, in the third

step. (iii) Once n00 is used in place of n, n00 is treated as a new index

independent ofn0, and this treatment is used in the fourth step. (iv)

The integrand of
Ð
n0db

0( ) is invariant with respect to n0 (because
its contained n00 is independent of n0), so �n0

Ð
n0 db0( ) 5

(�n0
Ð
n0) db0( ) 5

Ð
2‘
‘ db0( ), and this equality is used with

F22
i 2 a2F24

i 5 F22
i [12F2

j /(F
2
i 1 F2

j )]5 1/(F2
i 1F2

j ) in the

fifth step. (v) The integration variable is further transformed

from b0 to b00 5 b0 2 (bij 2 2n00p)/(aFi)
2 in the second last step;

(vi)
Ð ‘

2‘ db
00 exp(2a2b002)5

ffiffiffiffi
p

p
/a5

ffiffiffiffi
p

p
FiFj/(F

2
i 1F2

j )
1/2

is used

in the last step of the derivation of (B1). Rewriting n00 into n,

the result in the last step of (B1) gives C(bi 2 bj) defined in

(4.9), that is, the left-hand side of (4.10).

APPENDIX C

Derivation of (4.17)

Substituting P3is and P4is defined in (4.13) into (4.16) and

then into (4.5) gives

Va
R(ri, hi

,b
i
)5s

3�0s
X

1is
c
3s
2s

4�s
Y

1is
c
4s
, (C1)

Va
T(ri, hi

,b
i
)5s

3�0s
X

2is
c
3s
1s

4�s
Y

2is
c
4s
, (C2)

wa(r
i
, h

i
,b

i
)52s

3�0s
X

3is
c
3s
, (C3)

where

X
1is

5 F
i
P0

0(ri, rs)Pc
(b

i
2b

s
)dr/dR

i
1F 0

iP0
(r

i
, r

s
)P

c
(b

i
2b

s
)

h

1 F
i
P

0
(r

i
, r

s
)›

Ri
P

c
(b

i
2b

s
)
i
[P0

0(hi
,h

s
)/H

1P
0
(h

i
,h

s
)(d

z
Inr

a
)
i
](DrDhDb)1/2 , (C4)

X
2is

5F
i
P

0
(r

i
, r

s
)P0

c(bi
2b

s
)[P

0
(h

i
,h

s
)/H

1P
0
(h

i
,h

s
)(d

z
Inr

a
)
i
](DrDhDb)1/2/R

i
, (C5)

Y
1is

5F
i
P
0
(r

i
, r

s
)P0

c(bi
2b

s
)P(h

i
2h

s
)(DrDhDb)1/2/R

i
, (C6)

Y
2is
5 F

i
P0
0(ri, rs)Pc

(b
i
2b

s
)dr/dR

i
1F 0

iP0
(r

i
, r

s
)P

c
(b

i
2b

s
)

h

1F
i
P

0
(r

i
, r

s
)›

Ri
P
c
(b

i
2b

s
)
i
P(h

i
2h

s
)(DrDhDb)1/2 ,

(C7)

X
3is

5 fR21
i [F

i
P0
0(ri, rs)dr/dRi

1F 0
iP0

(r
i
, r

s
)]P

c
(b

i
2b

s
)1R21

i F
i
P
0
(r

i
, r

s
)›

R
P
c
(b

i
2b

s
)

1 F
i
P
c
(b

i
2b

s
)[P00

0(ri, rs)(dr/dRi
)2 1P0

0(ri, rs)d
2r/dR2

i ]

1 F
i
P
0
(r

i
, r

s
)›2Ri

P
c
(b

i
2b

s
)1 2›

Ri
P
c
(b

i
2b

s
)P0

0(ri, rs)dr/dRi

h i

1 2F 0
i P0

0(ri, rs)Pc
(b

i
2b

s
)dr/dR

i
1P

0
(r

i
, r

s
)›

Ri
P

c
(b

i
2b

s
)

h i

1 F 00
i P0

(r
i
, r

s
)P

c
(b

i
2b

s
)1R22

i F
i
P

0
(r

i
, r

s
)P00

c (bi
2b

s
)gP

0
(h

i
,h

s
)(DrDhDb)1/2 . (C8)

Here, P0
0(ri, rs), P

0
0(hi, hs), dr/dRi, and (dz lnra)i are the same

as those defined for Uis and Wis in (3.18), d2r/dR2
i 5

2Ri/[l(R
2
c 1R2

i )
3/2
], and

F
i
[F(R

i
)5 [tanh(R

i
/R

e
)]2 ,

F 0
i [dF

i
/dR

i
5 2 tanh(R

i
/R

e
)[cosh(R

i
/R

e
)]22/R

e
,

F 00
i [d2F

i
/dR2

i 5 2f12 2[sinh(R
i
/R

e
)]2g[cosh(R

i
/R

e
)]24/R2

e ,

P00
0(ri, rs)[ ›2P

0
(r

i
, r

s
)/›r2i

5 2(2/p)
1/4f[12 2(r

i
1 r

s
)
2
] exp[2(r

i
1 r

s
)
2
]2 [12 2(r

i
2 r

s
)
2
] exp[2(r

i
2 r

s
)
2
]g ,

P0
c(bi

2b
s
)[ ›P

c
(b

i
2b

s
)/›b

i
522(2/p)1/4F25/2

i �n
(b

i
2b

s
2 2np) exp[2(b

i
2b

s
2 2np)2/F2

i ] ,

P00
c (bi

2b
s
)[ ›2P

c
(b

i
2b

s
)/›b2

i

522(2/p)1/4F25/2
i �n

[12 2(b
i
2b

s
2 2np)2/F2

i ] exp[2(b
i
2b

s
2 2np)2/F2

i ] ,

›
Ri
P
c
(b

i
2b

s
)[ ›P

c
(b

i
2b

s
)/›R

i
5F0

i›Pc
(b

i
2b

s
)/›F

i

5 (2/p)1/4F0
i�n

[2(b
i
2b

s
2 2np)2F27=2

i 2F23=2
i /2] exp[2(b

i
2b

s
2 2np)2/F2

i ]

›2Ri
P
c
(b

i
2b

s
)[ ›2P

c
(b

i
2b

s
)/›R2

i 5F00
i ›Pc

(b
i
2b

s
)/›F

i
1F02

i ›
2P

c
(b

i
2b

s
)/›F2

i
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5 (2/p)
1/4fF00

i F
23/2
i �n

[2(b
i
2b

s
2 2np)

2
/F2

i 2 1/2]

1F02
i F

25/2
i �n

[4(b
i
2b

s
2 2np)4/F4

i 2 8(b
i
2b

s
2 2np)2/F2

i 1 3/4]g exp[2(b
i
2b

s
2 2np)2/F2

i ] ,

F0
i [dF

i
/dR

i
5 [2 sinh(l/2)2p]R

p
/(R

i
1R

p
)2 ,

F00
i [d2F

i
/dR2

i 5 2[p2 2 sinh(l/2)]R
p
/(R

i
1R

p
)
3
.

Substituting (C1)–(C3) into (4.6) gives (4.17).

The divergence and vorticity computed from ua are denoted

and defined by da[ =02x and za[ =02c, respectively. Substituting
(4.4) and (4.16) into these definitions gives

da(r
i
,h

i
,b

i
)5s

3�0s
X

4is
c
3s
, (C9)

za(r
i
,h

i
,b

i
)5s

4�s
Y

4is
c
4s
, (C10)

where

X
4is

5 fR21
i [F

i
P0

0(ri, rs)dr/dRi
1F 0

iP0
(r

i
, r

s
)]P

c
(b

i
2b

s
)1R21

i F
i
P

0
(r

i
, r

s
)›

R
P

c
(b

i
2b

s
)

1 F
i
P

c
(b

i
2b

s
)[P00

0(ri, rs)(dr/dRi
)2 1P0

0(ri, rs)d
2r/dR2

i ]

1 F
i
P

0
(r

i
, r

s
)›2Ri

P
c
(b

i
2b

s
)1 2›

Ri
P

c
(b

i
2b

s
)P0

0(ri, rs)dr/dRi

h i

1 2F 0
i P0

0(ri, rs)Pc
(b

i
2b

s
)dr/dR

i
1P

0
(r

i
, r

s
)›

Ri
P
c
(b

i
2b

s
)

h i

1 F 00
i P0

(r
i
, r

s
)P

c
(b

i
2b

s
)1R22

i F
i
P
0
(r

i
, r

s
)P00

c (bi
2b

s
)g[P0

0(hi
, h

s
)1P

0
(h

i
, h

s
)(d

z
lnr

a
)
i
],

Y
4is

5 fR21
i [F

i
P0

0(ri, rs)dr/dRi
1F 0

iP0
(r

i
, r

s
)]P

c
(b

i
2b

s
)1R21

i F
i
P

0
(r

i
, r

s
)›

R
P

c
(b

i
2b

s
)

1 F
i
P

c
(b

i
2b

s
)[P00

0(ri, rs)(dr/dRi
)2 1P0

0(ri, rs)d
2r/dR2

i ]

1 F
i
P

0
(r

i
, r

s
)›2Ri

P
c
(b

i
2b

s
)1 2›

Ri
P

c
(b

i
2b

s
)P0

0(ri, rs)dr/dRi

h i

1 2F 0
i P0

0(ri, rs)Pc
(b

i
2b

s
)dr/dR

i
1P

0
(r

i
, r

s
)›

Ri
P
c
(b

i
2b

s
)

h i

1 F 00
i P0

(r
i
, r

s
)P

c
(b

i
2b

s
)1R22

i F
i
P
0
(r

i
, r

s
)P00

c (bi
2b

s
)gP(h

i
2h

s
) .

Note that Ri / 0 as ri / 0, Fi /O(R2
i )/ 0 and

F 0
i /O(Ri)/ 0 as Ri / 0, P0(ri, rs)/ 0 and P00

0(ri, rs)/ 0 as

ri/ 0, andP0(hi, hs)/ 0 as hi/ 0. Applying these properties to

(C4)–(C10), it is easy to see that the matrix element terms X1is,

X2is,X3is,X4is,Y1is,Y2is, andY4is all approach zero asRi/ 0, and

X3is approaches zero as hi / 0. Substituting these results into

(C1)–(C3) and (C9)–(C10) givesVa
R / 0,Va

T / 0,wa/ 0, da/

0, and za/ 0 asRi/ 0, andwa/ 0 as hi/ 0. Thus, the required

boundary conditions (stated the end of section 2c) are satisfied

automatically. In addition, da and za also approach zero asRi/ 0,

and these additional conditions are necessary for the convergence

of da and za in the limit ofRi/ 0. The convergence ofwa, da, and

za in the limit of Ri / 0 requires both Fi and F 0
i / 0 as Ri / 0.

For example, if F is defined by tanh(R/Re) instead of [tanh(R/

Re)]
2, then F/ 0 butF0 5 [cosh(R/Re)]

22/Re/ 1/Re 6¼ 0 asR/

0. In this case, it is easy to see from (C3) [or (C9), (C10)] that wa

(or da, za) is not ensured to converge to a single value (which is

zero for a purely asymmetric field) at R 5 0 because it can ap-

proach different values as R / 0 from different azimuthal di-

rections (withb fixed to different values), althoughVa
R andVa

T still

approach zero asR/ 0. Furthermore, if F is simply set to 1, then

wa, da, and za become singular atR5 0whileVa
R in (C1) andVa

T in

(C2)arenot ensured toconverge toa singlevalueatR5 0.Theabove

analyses explainwhyF[ [tanh(R/Re)]
2 is introduced tomodulate the

background error standard deviations of X and Y (mainly in the

vortex core), as shown in (4.8) where F is combined into g [ raF.

REFERENCES

Bluestein, H. B., K. J. Thiem, J. C. Snyder, and J. B. Houser, 2019:

Tornadogenesis and early tornado evolution in the El Reno,

Oklahoma, supercell on 31 May 2013. Mon. Wea. Rev., 147,

2045–2066, https://doi.org/10.1175/MWR-D-18-0338.1.
Caillault, K., and Y. Lemaitre, 1999: Retrieval of three-dimensional

wind fields corrected for the time-induced advection problem.

J. Atmos. Oceanic Technol., 16, 708–722, https://doi.org/10.1175/

1520-0426(1999)016,0708:ROTDWF.2.0.CO;2.
Chong, M., J. Testud, and F. Roux, 1983: Three-dimensional wind

field analysis from dual-Doppler radar data. Part II: Minimizing

the error due to temporal variation. J. Climate Appl. Meteor.,

22, 1216–1226, https://doi.org/10.1175/1520-0450(1983)022,1216:

TDWFAF.2.0.CO;2.
Gal-Chen, T., 1982: Errors in fixed andmoving frame of references:

Applications for conventional and Doppler radar analysis.

J. Atmos. Sci., 39, 2279–2300, https://doi.org/10.1175/1520-

0469(1982)039,2279:EIFAMF.2.0.CO;2.
Gao, J., and D. Stensrud, 2014: Some observing system simulation

experiments with a hybrid 3DEnVAR system for storm-scale

radar DA. Mon. Wea. Rev., 142, 3326–3346, https://doi.org/

10.1175/MWR-D-14-00025.1.
——, and Coauthors, 2013: A real-time weather-adaptive 3DVAR

analysis system for severe weather detections and warn-

ings. Wea. Forecasting, 28, 727–745, https://doi.org/10.1175/

WAF-D-12-00093.1.
Jones, T. A., and Coauthors, 2016: Storm-scale DA and en-

semble forecasting with the NSSL experimental Warn-on-

Forecast System. Part II: Combined radar and satellite data

MARCH 2021 XU 839

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:37 PM UTC

https://doi.org/10.1175/MWR-D-18-0338.1
https://doi.org/10.1175/1520-0426(1999)016<0708:ROTDWF>2.0.CO;2
https://doi.org/10.1175/1520-0426(1999)016<0708:ROTDWF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1216:TDWFAF>2.0.CO;2
https://doi.org/10.1175/1520-0450(1983)022<1216:TDWFAF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2
https://doi.org/10.1175/1520-0469(1982)039<2279:EIFAMF>2.0.CO;2
https://doi.org/10.1175/MWR-D-14-00025.1
https://doi.org/10.1175/MWR-D-14-00025.1
https://doi.org/10.1175/WAF-D-12-00093.1
https://doi.org/10.1175/WAF-D-12-00093.1


experiments.Wea. Forecasting, 31, 297–327, https://doi.org/

10.1175/WAF-D-15-0107.1.
Kurdzo, J. M., and Coauthors, 2017: Observations of severe local

storms and tornadoes with the Atmospheric Imaging Radar.

Bull. Amer. Meteor. Soc., 98, 915–935, https://doi.org/10.1175/

BAMS-D-15-00266.1.

Lee, W. C., and J. Wurman, 2005: Diagnosed three-dimensional

axisymmetric structure of the Mulhall tornado on 3 May

1999. J. Atmos. Sci., 62, 2373–2393, https://doi.org/10.1175/

JAS3489.1.

Liou, Y., 1999: Single radar recovery of cross-beam wind

components using a modified moving frame of reference

technique. J. Atmos. Oceanic Technol., 16, 1003–1016,

https://doi.org/10.1175/1520-0426(1999)016,1003:SRROCB.
2.0.CO;2.

——, 2002: An explanation of the wind speed underestimation

obtained from a least squares type of single-Doppler radar

velocity retrieval method. J. Appl. Meteor., 41, 811–823,

https://doi.org/10.1175/1520-0450(2002)041,0811:AEOTWS.
2.0.CO;2.

——, H. B. Bluestein, M. M. French, and Z. B. Wienhoff, 2018:

Single-Doppler velocity retrieval of the wind field in a tornadic

supercell using mobile, phased-array, Doppler radar data.

J. Atmos. Oceanic Technol., 35, 1649–1663, https://doi.org/

10.1175/JTECH-D-18-0004.1.

Liu, S., C. Qiu, Q. Xu, and P. Zhang, 2004: An improved time

interpolation for three-dimensional Doppler wind analysis.

J. Appl. Meteor., 43, 1379–1391, https://doi.org/10.1175/

JAM2150.1.

——, M. Xue, and Q. Xu, 2007: Using wavelet analysis to detect

tornadoes from Doppler radar radial-velocity observations.

J. Atmos. Oceanic Technol., 24, 344–359, https://doi.org/10.1175/

JTECH1989.1.

Newman, J. F., V. Lakshmanan, P. L. Heinselman, M. B. Richman,

and T. M. Smith, 2013: Range-correcting azimuthal shear in

Doppler radar data. Wea. Forecasting, 28, 194–211, https://

doi.org/10.1175/WAF-D-11-00154.1.

NOAA, 2014: Strategic plan for NOAA’s Office of Oceanic

and Atmospheric Research. NOAA Rep., 29 pp., https://

research.noaa.gov/sites/oar/Documents/OARStrategicPlan.pdf.

Potvin, C. K., A. Shapiro, T. Y. Yu, J. Gao, and M. Xue, 2009:

Using a low-order model to detect and characterize tornadoes

in multiple-Doppler radar data. Mon. Wea. Rev., 137, 1230–

1249, https://doi.org/10.1175/2008MWR2446.1.

——, ——, M. I. Biggerstaff, and J. M. Wurman, 2011: The

VDAC technique: A variational method for detecting and

characterizing convective vortices in multiple-Doppler radar

data. Mon. Wea. Rev., 139, 2593–2613, https://doi.org/10.1175/

2011MWR3638.1.

Shapiro, A., K. M. Willingham, and C. K. Potvin, 2010: Spatially

variable advection correction of radar data. Part I: Theoretical

considerations. J. Atmos. Sci., 67, 3445–3456, https://doi.org/

10.1175/2010JAS3465.1.

——, S. Rahimi, C. K. Potvin, and L. Orf, 2015: On the use of

advection correction in trajectory calculations. J. Atmos. Sci.,

72, 4261–4280, https://doi.org/10.1175/JAS-D-15-0095.1.

Skinner, P. S., and Coauthors, 2018: Object-based verification of

a prototype warn-on-forecast system. Wea. Forecasting, 33,

1225–1250, https://doi.org/10.1175/WAF-D-18-0020.1.

Snook, N., Y. Jung, J. Brotzge, B. Putnam, and M. Xue, 2016:

Prediction and ensemble forecast verification of hail in the

supercell storms of 20 May 2013. Wea. Forecasting, 31, 811–

825, https://doi.org/10.1175/WAF-D-15-0152.1.

——, M. Xue, and Y. Jung, 2019: Tornado-resolving ensemble and

probabilistic predictions of the 20May 2013Newcastle–Moore

EF5 tornado.Mon. Wea. Rev., 147, 1215–1235, https://doi.org/

10.1175/MWR-D-18-0236.1.

Stensrud, D. J., and Coauthors, 2009: Convective-scale warn on

forecast: A vision for 2020.Bull. Amer. Meteor. Soc., 90, 1487–

1499, https://doi.org/10.1175/2009BAMS2795.1.

——, and Coauthors, 2013: Progress and challenges with warn-

on-forecast. Atmos. Res., 123, 2–16, https://doi.org/10.1016/

j.atmosres.2012.04.004.

Stumpf, G. J., and Coauthors, 1998: The National Severe Storms

Laboratory mesocyclone detection algorithm for the WSR-88D.

Wea. Forecasting, 13, 304–326, https://doi.org/10.1175/1520-

0434(1998)013,0304:TNSSLM.2.0.CO;2.

Wang, Y., and Coauthors, 2019: Test of a weather-adaptive dual-

resolution hybrid warn-on-forecast analysis and forecast sys-

tem for several severe weather events. Wea. Forecasting, 34,

1807–1827, https://doi.org/10.1175/WAF-D-19-0071.1.

Wheatley,D.M., K.H.Knopfmeier, T.A. Jones, andG. J. Creager,

2015: Storm-scale DA and ensemble forecasting with the

NSSL Experimental Warn-on-Forecast System. Part I: Radar

data experiments. Wea. Forecasting, 30, 1795–1817, https://

doi.org/10.1175/WAF-D-15-0043.1.

Wood, V. T., and R. A. Brown, 1997: Effects of radar sampling on

single-Doppler velocity signatures of mesocyclones and tor-

nadoes.Wea. Forecasting, 12, 928–938, https://doi.org/10.1175/

1520-0434(1997)012,0928:EORSOS.2.0.CO;2.

——, and ——, 2011: Simulated tornadic vortex signatures of

tornado-like vortices having one- and two-celled structures.

J. Appl. Meteor. Climatol., 50, 2338–2342, https://doi.org/

10.1175/JAMC-D-11-0118.1.

Wurman, J., and K. Kosiba, 2018: The role of small-scale vortices

in enhancing surface winds and damage in Hurricane Harvey

(2017). Mon. Wea. Rev., 146, 713–722, https://doi.org/10.1175/

MWR-D-17-0327.1.

Xu, Q., 2019: On the choice of momentum control variables and

covariance modeling for mesoscale data assimilation. J. Atmos.

Sci., 76, 89–111, https://doi.org/10.1175/JAS-D-18-0093.1.

——, and L. Wei, 2020: A variational method for analyzing vortex

flows in radar-scanned tornadic mesocyclones. Part II: Tests

with analytically formulated vortices. J. Atmos. Sci., 78,

843–861, https://doi.org/10.1175/JAS-D-20-0159.1.

——,K. Nai, and L.Wei, 2007a: An innovationmethod for estimating

radar radial-velocity observation error and background wind

error covariances. Quart. J. Roy. Meteor. Soc., 133, 407–415,

https://doi.org/10.1002/qj.21.

——, ——, ——, H. Lu, P. Zhang, S. Liu, and D. Parrish, 2007b:

Estimating radar wind observation error and NCEP WRF

background wind error covariances from radar radial-velocity

innovations. 18th Conf. on Numerical Weather Prediction,

ParkCity,UT,Amer.Meteor. Soc., 1B.3, https://ams.confex.com/

ams/22WAF18NWP/techprogram/paper_123419.htm.

——, L. Wei, W. Gu, J. Gong, and Q. Zhao, 2010: A 3.5-dimen-

sional variational method for Doppler radar data assimilation

and its application to phased-array radar observations. Adv.

Meteor., 2010, 797265, https://doi.org/10.1155/2010/797265.

——, ——, K. Nai, S. Liu, R. M. Rabin, and Q. Zhao, 2015a:

A radar wind analysis system for nowcast applications. Adv.

Meteor., 2015, 264515, https://doi.org/10.1155/2015/264515.

——, ——, and ——, 2015b: Analyzing vortex winds in radar-

observed tornadic mesocyclones for nowcast applications.

Wea. Forecasting, 30, 1140–1157, https://doi.org/10.1175/

WAF-D-15-0046.1.

840 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 78

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:37 PM UTC

https://doi.org/10.1175/WAF-D-15-0107.1
https://doi.org/10.1175/WAF-D-15-0107.1
https://doi.org/10.1175/BAMS-D-15-00266.1
https://doi.org/10.1175/BAMS-D-15-00266.1
https://doi.org/10.1175/JAS3489.1
https://doi.org/10.1175/JAS3489.1
https://doi.org/10.1175/1520-0426(1999)016<1003:SRROCB>2.0.CO;2
https://doi.org/10.1175/1520-0426(1999)016<1003:SRROCB>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<0811:AEOTWS>2.0.CO;2
https://doi.org/10.1175/1520-0450(2002)041<0811:AEOTWS>2.0.CO;2
https://doi.org/10.1175/JTECH-D-18-0004.1
https://doi.org/10.1175/JTECH-D-18-0004.1
https://doi.org/10.1175/JAM2150.1
https://doi.org/10.1175/JAM2150.1
https://doi.org/10.1175/JTECH1989.1
https://doi.org/10.1175/JTECH1989.1
https://doi.org/10.1175/WAF-D-11-00154.1
https://doi.org/10.1175/WAF-D-11-00154.1
https://research.noaa.gov/sites/oar/Documents/OARStrategicPlan.pdf
https://research.noaa.gov/sites/oar/Documents/OARStrategicPlan.pdf
https://doi.org/10.1175/2008MWR2446.1
https://doi.org/10.1175/2011MWR3638.1
https://doi.org/10.1175/2011MWR3638.1
https://doi.org/10.1175/2010JAS3465.1
https://doi.org/10.1175/2010JAS3465.1
https://doi.org/10.1175/JAS-D-15-0095.1
https://doi.org/10.1175/WAF-D-18-0020.1
https://doi.org/10.1175/WAF-D-15-0152.1
https://doi.org/10.1175/MWR-D-18-0236.1
https://doi.org/10.1175/MWR-D-18-0236.1
https://doi.org/10.1175/2009BAMS2795.1
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1016/j.atmosres.2012.04.004
https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
https://doi.org/10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2
https://doi.org/10.1175/WAF-D-19-0071.1
https://doi.org/10.1175/WAF-D-15-0043.1
https://doi.org/10.1175/WAF-D-15-0043.1
https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2
https://doi.org/10.1175/1520-0434(1997)012<0928:EORSOS>2.0.CO;2
https://doi.org/10.1175/JAMC-D-11-0118.1
https://doi.org/10.1175/JAMC-D-11-0118.1
https://doi.org/10.1175/MWR-D-17-0327.1
https://doi.org/10.1175/MWR-D-17-0327.1
https://doi.org/10.1175/JAS-D-18-0093.1
https://doi.org/10.1175/JAS-D-20-0159.1
https://doi.org/10.1002/qj.21
https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_123419.htm
https://ams.confex.com/ams/22WAF18NWP/techprogram/paper_123419.htm
https://doi.org/10.1155/2010/797265
https://doi.org/10.1155/2015/264515
https://doi.org/10.1175/WAF-D-15-0046.1
https://doi.org/10.1175/WAF-D-15-0046.1


——, ——, J. Gao, and Q. Zhao, K. Nai and S. Liu, 2016:

Multistep variational data assimilation: Important issues and

a spectral approach. Tellus, 68A, 31110, https://doi.org/10.3402/

tellusa.v68.31110.

——, ——, and K. Nai, 2017: A three-step method for esti-

mating vortex center locations in four-dimensional space

from radar-observed tornadic mesocyclones. J. Atmos.

Oceanic Technol., 34, 2275–2281, https://doi.org/10.1175/
JTECH-D-17-0123.1.

Yang, S., and Q. Xu, 1996: Statistical errors in variational data

assimilation—A theoretical one-dimensional analysis ap-

plied to Doppler wind retrieval. J. Atmos. Sci., 53, 2563–2577,

https://doi.org/10.1175/1 520-0469(1996)053,2563:SEIVDA.
2.0.CO;2.

Zhang, J., and T. Gal-Chen, 1996: Single-Doppler wind re-

trieval in the moving frame of reference. J. Atmos. Sci., 53,

2609–2623, https://doi.org/10.1175/1520-0469(1996)053,2609:

SDWRIT.2.0.CO;2.

MARCH 2021 XU 841

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 07/19/23 03:37 PM UTC

https://doi.org/10.3402/tellusa.v68.31110
https://doi.org/10.3402/tellusa.v68.31110
https://doi.org/10.1175/JTECH-D-17-0123.1
https://doi.org/10.1175/JTECH-D-17-0123.1
https://doi.org/10.1175/1 520-0469(1996)053<2563:SEIVDA>2.0.CO;2
https://doi.org/10.1175/1 520-0469(1996)053<2563:SEIVDA>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<2609:SDWRIT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1996)053<2609:SDWRIT>2.0.CO;2

